Photo of Stanley Qi

Biotechnology & medicine

Stanley Qi

Inventions based on CRISPR technologies have empowered genome engineering beyond editing

Year Honored


Through gene modification, researchers can increase crop yield, change the biological traits of plants, and even cure diseases. But one major issue with CRISPR/Cas system-based gene modification is that the changes are irreversible.

Stanley Qi, Assistant Professor in the Department of Bioengineering at Stanford University, has devoted himself to creating gene regulation techniques where the results are controllable and reversible.

In 2013, Qi developed the first CRISPR-deactivated Cas9 (dCas9) for sequence-specific gene regulation in cells. The technology expanded the use of CRISPR technology, transforming it from being a pair of simple “molecular scissors,” to a versatile “swiss army knife,” including a switch to turn on or off gene expression without genetic mutations, a labeler to diagnose genes, and a tweezer to control 3D gene location.

Based on his invention of dCas molecules, he developed a series of technologies that lay the foundation for a bioengineering revolution, thus changing the definition of genome engineering. He also developed the CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) technologies as ON/OFF gene switches to activate or repress any gene in any cell; CRISPR imaging is also one of his inventions, which could allow one to precisely track the movement of DNA in a diseased cell. Recently, he invented CRISPR-GO (Genome Organization), a powerful technology to control the 3-dimensional (3D) genome structure; and CRISPR-IO (Input/Output) technologies that couple cancer signals to genome controllers for novel therapies.

His inventions have advanced gene editing and disease treatment via rational design of engineered molecules and genetic circuits, including Boolean logics and feedbacks, to enhance safety and efficacy of cancer immunotherapy and regenerative medicine.