Photo of Avinash Manjula Basavanna

Energy & sustainability

Avinash Manjula Basavanna

His biodegradable plastic protects against extreme chemicals, but heals itself using water.

Year Honored
2020

Organization
WYSS INSTITUTE, HARVARD UNIVERSITY

Region
Global

Hails From
India

Of the estimated 9.1 billion tons of plastic ever produced, only 9% has been recycled. Almost 80% ends up as waste that adds to growing landfills or pollutes the natural environment, where it takes a thousand years to degrade. Such materials can also end up in the human body as microplastics, slowly accumulating with devastating effects on health. One key to solving these problems could be bioplastics—plastic alternatives produced through bioengineered organisms. These can degrade naturally and much more quickly.

The idea of bioplastics isn’t exactly new, but it’s been difficult to make them in the sorts of quantities and with the properties that would be useful for industry. Avinash Manjula Basavanna, a postdoc at the Wyss Institute for Biologically Inspired Engineering at Harvard University, thinks he can do better. He and his colleagues have developed a new type of plastic based on living materials that he calls AquaPlastic and which can be produced at a commercial scale, exhibits the tough qualities of many petroleum-based plastics, and can degrade in water in as little as two months. 

The material itself is resistant to strong acids and bases. It can be applied as a coating using nothing but water, which makes the plastic turn adhesive—the first plastic of its kind to boast this feature. If it gets scratched, the coating can also be “healed” using water. And most important, “it’s flushable,” says Manjula Basavanna. “You don’t have to worry about it adding to our plastic and microplastic problem.” He and his partners are now in the beginning stages of forming a startup around AquaPlastic. If manufactured at scale, the cheap, biodegradable material could compete with conventional plastic coatings.