Photo of Stafford Sheehan

Energy & sustainability

Stafford Sheehan

Capturing existing carbon dioxide and converting it into a useful commercial product.

Year Honored

Air Company


Confronting rising carbon emissions may be the most pressing problem we face today. Stafford Sheehan, 34, believes he’s found a way not just to reduce those emissions, but also to capture existing carbon dioxide and convert it into a useful commercial product.

As the cofounder and chief technical officer of Air Company, Sheehan has developed a process for converting carbon dioxide into new products. Much as plants use photosynthesis to turn carbon dioxide and water into sugars and oxygen, Air Company’s proprietary technology combines carbon dioxide with hydrogen gas using a catalyst. The resulting liquid contains alcohols that can be separated by distillation. Air Company is currently marketing luxury cologne and vodka made from its alcohol. The product also contains compounds called paraffins, which could be used in jet fuel. These alternative fuels could be key to decarbonizing aviation.

The International Energy Agency estimates that aviation currently produces over 2% of all energy-related carbon emissions.

There are roughly 12 kilowatt hours of energy in each kilogram of jet fuel. Right now, it takes Air Company’s process roughly twice that much energy in the form of electricity to produce a kilogram of fuel. Air Company purchases renewable-energy certificates to offset the electricity this process consumes. The company currently has a limited contract with the military and hopes to be selling jet fuel on a small scale with the next few years.

“Whatever you do in the laboratory doesn’t count. Most technologies don’t die in their initial proof of concept; they die in a scale-up,” says Stafford. “We’ve demonstrated that we can run our reactor systems on scales that are relevant to industrial chemical technologies.”

Correction: An earlier version of this article mischaracterized the process by which Air Company produces its jet fuel.