Photo of Mohamed Dhaouafi

Biotechnology & medicine

Mohamed Dhaouafi

His company’s artificial limbs are not only high-functioning but cheap enough for people in low-income countries.

Year Honored
2020

Organization
CURE BIONICS

Region
Global

Hails From
Tunisia

Four years ago, during a university challenge, Mohamed Dhaouafi found out that one of his teammates’ cousins had been born without upper limbs and couldn’t afford prosthetics. An engineering student at the time, he’d been searching for a project that would have a social impact—and as he started to research limb loss around the world, he found a massive unmet need. The World Health Organization estimates that there are 30 million people with amputated limbs in poor countries, and only 5% of them have access to prosthetics. Fitting children with high-quality devices is particularly expensive because they’re constantly growing. But without prosthetics, stigma and mobility problems keep large numbers of them from attending school, setting many up for lifelong unemployment. “We’re not just talking about limb differences,” Dhaouafi says. “We’re talking about poverty, access to education, access to health care.” 

Today, Dhaouafi has a product he believes will help make advanced artificial limbs more accessible. His Tunisia-based startup, Cure Bionics, is in the process of finalizing an adjustable multi-grip bionic arm that will sell for about $2,000—a fraction of the cost of similar devices. His team plans to keep costs down by 3D-printing key components and engineering much of the circuitry in-house. 

But this doesn’t mean they’re skimping on quality: like bionic arms developed elsewhere, Cure’s prototype is equipped with sensors that allow users to operate the hand by flexing or relaxing the muscles in their residual limb. The company is also developing algorithms to help the arm recognize the body’s electrical signals more accurately, which will minimize reliance on an orthopedist for adjustments. At a later stage, Cure plans to introduce a virtual--reality headset that will gamify the physical therapy process for children. “Instead of a doctor asking you to imagine picking up an apple, you’ll be using your hand to jump between buildings like Spider-Man,” Dhaouafi says.

Dhaouafi and his colleagues are closing in on their initial product launch: they’ve already tested their arm with five Tunisian youths and will soon initiate trials at three government hospitals. Ultimately Dhaouafi hopes to offer a range of high-quality, affordable prosthetics for young people across Africa, the Middle East, and beyond.