Photo of Jinxing Zheng

Energy & sustainability

Jinxing Zheng

He created new physics models for controlling fusion reactions and hot plasma.

Year Honored

Institute of Plasma Physics, Chinese Academy of Sciences


Hails From

Jinxing Zheng has devised better ways to model the use of powerful magnets for controlling plasma at extreme temperatures, a major advance for fusion-based energy. Zheng’s work is helping China leapfrog the rest of the world and design the largest fusion reactor to date, called the China Fusion Engineering Test Reactor. CFETR is expected to finish construction and go online before 2035, though it may take five to 10 years to reach full power. 

Fusion reactors, based on the energy released when atoms are combined, have great potential for creating clean energy and are inherently safer than existing nuclear power based on fission reactions. But no one has built a practical one, in part because it’s so challenging to contain the necessary plasma, which can reach temperatures of hundreds of millions of degrees Celsius. 

Zheng’s innovation amounts to having discovered new theoretical models for understanding how multiple large superconducting magnets can rapidly change their magnetic fields to keep plasma in one place while fusion reactions occur. In 2018, with the help of Zheng’s models, a fusion reactor in Hefei, China, called the Experimental Advanced Superconducting Tokamak—nicknamed “the artificial sun”—controlled plasma at a record temperature of 50 million˚C for 102 seconds.

China’s future CFETR is intended to operate at over 1 gigawatt of power sometime in the 2030s. That’s double the power of ITER, a fusion reactor currently being completed in the south of France with cooperation from countries around the world.