Photo of Cui-Zu Chang

Nanotechnology & materials

Cui-Zu Chang

Experimentally realizing the quantum anomalous Hall (QAH) effect

Year Honored


Charge-based semiconductor devices are the building blocks of modern electronics. Current flowing through a semiconductor inevitably incurs energy dissipation; the management of which is a key challenge for circuit miniaturization. The search for alternative paradigms of electronics and alternative electronic degrees of freedom, such as spin, is a vibrant frontier in condensed matter physics.

Dissipation-free transport can take place in a “topological insulator (TI)”, a material in which the interior is insulating but electrons can travel without resistance along one-dimensional conducting channels known as edge states. Topological phase of matter won the Nobel Prize in Physics in 2016 and has become a hot topic in the field of physics in recent years.

In 2013, after four years of unremitting efforts, Cui-Zu Chang, a 28-year-old doctoral student of the famous physicist Qi-Kun Xue of Tsinghua University, first experimentally realized the “quantum anomalous Hall (QAH) effect”, which was envisioned by Haldane in 1988. He achieved the two essential ingredients of the QAH effect, a TI with an internal magnetization, by successfully doping magnetic ions into a TI film using molecular beam epitaxy (MBE). The work was published in the journal Science in early 2013 and featured in the official announcement for the 2016 Nobel Prize in Physics. This achievement made Chang famous in the field of condensed matter physics overnight and was highly praised by his Ph.D. supervisor Qi-Kun Xue, former Stanford professor Shou-Cheng Zhang, and Nobel Physics Prize laureate Zhen-Ning Yang.

After a four-year postdoctoral study at MIT, Chang joined Pennsylvania State University, which is known for its condensed matter physics. Collaborating with colleagues at Penn State and Rutgers, he has discovered fundamentally new phenomena in QAH sandwich samples such as a candidate “axion insulator”, a state hypothesized by Frank Wilczek in 1987 but as of yet, unobserved in particle physics. Its realization in the solid state provides a promising platform for the pursuit of anyon (i.e. beyond boson and fermion) physics, a holy grail of physics research.

In the future, Chang's research group at Penn State will explore new quantum topological materials and fabricate new quantum structures to enhance the working temperature of QAH effect. Hopefully, the QAH effect can be realized at the temperatures higher than liquid nitrogen temperature ( -195℃). “If the working temperature of the QAH effect is above liquid nitrogen temperature, the QAH state will solve the need for low-energy electronic devices, thus implementing the long-awaited quantum computer,” Chang said.